Enhanced Protein Degradation by Branched Ubiquitin Chains
نویسندگان
چکیده
Posttranslational modification of cell-cycle regulators with ubiquitin chains is essential for eukaryotic cell division. Such chains can be connected through seven lysine residues or the amino terminus of ubiquitin, thereby allowing the assembly of eight homogenous and multiple mixed or branched conjugates. Although functions of homogenous chain types have been described, physiological roles of branched structures are unknown. Here, we report that the anaphase-promoting complex (APC/C) efficiently synthesizes branched conjugates that contain multiple blocks of K11-linked chains. Compared to homogenous chains, the branched conjugates assembled by the APC/C strongly enhance substrate recognition by the proteasome, thereby driving degradation of cell-cycle regulators during early mitosis. Our work, therefore, identifies an enzyme and substrates for modification with branched ubiquitin chains and points to an important role of these conjugates in providing an improved signal for proteasomal degradation.
منابع مشابه
Deciphering Functions of Branched Ubiquitin Chains
The anaphase-promoting complex/cyclosome targets proteins for degradation by catalyzing homotypic ubiquitin chains of different linkage types. In this issue of Cell, Meyer and Rape diversify the degradation signals by demonstrating that the APC/C and its cognate E2 conjugating enzymes enhance the rate of substrate degradation by decorating them with branched Lys11 and Lys48 ubiquitin chains.
متن کاملUfd2p synthesizes branched ubiquitin chains to promote the degradation of substrates modified with atypical chains
Ubiquitination of a subset of proteins by ubiquitin chain elongation factors (E4), represented by Ufd2p in Saccharomyces cerevisiae, is a pivotal regulator for many biological processes. However, the mechanism of Ufd2p-mediated ubiquitination is largely unclear. Here, we show that Ufd2p catalyses K48-linked multi-monoubiquitination on K29-linked ubiquitin chains assembled by the ubiquitin ligas...
متن کاملAssembly and Function of Heterotypic Ubiquitin Chains in Cell-Cycle and Protein Quality Control.
Posttranslational modification with ubiquitin chains controls cell fate in all eukaryotes. Depending on the connectivity between subunits, different ubiquitin chain types trigger distinct outputs, as seen with K48- and K63-linked conjugates that drive protein degradation or complex assembly, respectively. Recent biochemical analyses also suggested roles for mixed or branched ubiquitin chains, y...
متن کاملIn vivo disassembly of free polyubiquitin chains by yeast Ubp14 modulates rates of protein degradation by the proteasome.
Degradation of many eukaryotic proteins requires their prior ligation to polyubiquitin chains, which target substrates to the 26S proteasome, an abundant cellular protease. We describe a yeast deubiquitinating enzyme, Ubp14, that specifically disassembles unanchored ('free') ubiquitin chains in vitro, a specificity shared by mammalian isopeptidase T. Correspondingly, deletion of the UBP14 gene ...
متن کاملQuantitative Proteomics Reveals the Function of Unconventional Ubiquitin Chains in Proteasomal Degradation
All seven lysine residues in ubiquitin contribute to the synthesis of polyubiquitin chains on protein substrates. Whereas K48-linked chains are well established as mediators of proteasomal degradation, and K63-linked chains act in nonproteolytic events, the roles of unconventional polyubiquitin chains linked through K6, K11, K27, K29, or K33 are not well understood. Here, we report that the unc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cell
دوره 157 شماره
صفحات -
تاریخ انتشار 2014